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Achieving Objectives in a Stochastic Environment in the Presence of Moral Hazard
by .
Andrew Edward Spero Jr.

Abstract: Responsibility accounting is a procedure f>r implementing a management-by-
objectives system in which the subordinate’s performance is evaluated in ‘comparison to
agreed-upon goals. In many institutional settings, agents are indeed hired to accomplish
goals. In a stochastic environment, where failure to achieve the goal is costly and success
may be random, the agent may be required to act repeatedly until the task has been
successfully completed. In this thesis, I study an agency model in which the agent must
accomplish a task in a stocj}gstxc environment. I assume that when the task is complete
the contract ends. Under suitable conditions, I find the main result of this ana1y51s when
the agent precommits to completing the task, the first-best contract may have an infinite
horizon, whereas the second-best contract will have a finite, maximum length (which
depends upon the level of exdgenous input costs). I derive some results with respect to
the sequences of wages and actions in these contracts and, under specific assumptions,

R

show that wages are decreasing and actions are increasing over time.

I also consider this problem when the agent learns over time. Learning by the agent
increases his efficiency (or likelihood to accomplish the task in any period). Learning
can occur costlessly—through experience—or may require additional, specific, directed
effort. With precommitment by the‘agent, I find that my main result, as described above
still holds, and without precommitment by the agent, I find that when learning occurs
(.OStlL.SblV or through experience, two results ar@ obtained: (1) holding future parameters
fixed, more efficient or better trained agents wq{;k harder than inefficient agents, and (2)
as the agent’can learn more within an interval, actions at the beginning of the interval

decrease. However, in general, actions are 1ot increasing over timie.



Achieving Objectives

_ Chapter I - Introduction:

L4

In this dissertation, 1 analyze an agency mods! of responsibility accounti_ng (and
_ responsibility centers) in which the superior holds “the subordinate accountable for
meeting a predetermined objective. Responsibility accounting is a procedure for
implementing a management-by-objectives system in which ‘the subordinate’s
performance is evalluated in comparison to agreed-upon,goals. The énalysis_ presented
here pro.des a cliaracterization of the optimal contractual arrangement between the
superior ard subordinate in such a system and thus leacis to insights into the planning and

control proc.ss that management accounting systems are designed to support.

Anthony, Dearden, and Govindarajan (1992) list the design and .support of management
control systems as one of the fhree functions of maragement accounting (along with
differential accounting for decisions and cost accounting for valuation purposes), and
Horngren, Foster, and Datar (1994) divide the management control process into two
components: planning and control. They define planning as “choosing goals ... and then
deciding how to attain the desired goals,” and control as “both the action that implements

the planning decision and performance evaluation of its personnel and its operations.”

In the planning phase, £he superior—or the superior and the subordinate in a participative
budgeting process—determine the‘objective to be achieved and the strategy or plan for
achieving that objective. In this tllqsis, [ abstract away from the planning problem by
assuming that the ijective——proﬁt maximization—and the product_i_dn function—the

probabilistic relationship between effort and output—are exogenously specified.

2



Achieving Objectives

In:the control ph‘ase,_ the subordinate acts, and the superiof evaluates the “su‘bo‘rdi-nate and
. ;;rovides feedback. This feedback c01nrﬁunicates either a change in prospective goals or
prospéctive activons to the subordinate.! In this analysis, where I assume that the goal or
objective. is specitied excgenously, the :feedback consists solely of instructions about
future activities (or effort levels); however, since both the superi;)r and subordinate are
assumed 1o be far-sighted and rational, ‘both can determine and analyze -the extensive
" form of their common game tree and thus develop their optim‘al policies ex ante. Thus, in
the general casé (as many authors, inch;ding ‘Anthony, Dearden, and Govindarajan, have
notegl)_ one cann'o'f:separate.the planning process from the control process sincé ihe

optimal plans and controls are determined simultaneously. The following diagram

provides an illustration of the planning and control process:

Exhibit 1: A Simple lllustration of the Planning & Control Process

Plans |—| Budgets —# Actions ——= Results
1

4" | Measure

Evaluate

Reward

IAs is diagrammed in Exhibit 1.,
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L~

-~ In rthis thesis, I analyze the following cases: (i) when the superior can measure the
subordinate’s activities and results—the first-best case~—and (ii) when he cannof observe
the subordinate’s actions—the second-best case. In the second-best case, all inferences
(and evaluations) of effort must be drawn from the meas51.1;§ments of output.. ‘
. :

In a generic responsibility center the subordinate generates E‘ou‘tput th}ﬁ;h thz
combination of his efforts and other inputs. The evaluation of the subordinate’s
performance and the nature of the feedback communicated can occur on the basis of one
~ or two dimensions——effectiveness and/or efficiency. Effectiveness is the relationship
between the center’s actual output and its objective (or planned output). Efficiency is the
re!ationsh'ip‘bet‘ween (the ratio of) the center’s actual output and (to) actual input(s).2 The
‘choice of these performance measures depends upon the nature of the fesponsibility
center, i.e.. the factors for which the— subordinate is held 4accountable.3 In this thesis, |
assume that the subordinate must produce one unit of nondivisible output to be effective
(and thus is in control of a cost center). Furthermore, [ assume that if the subordinate
puts forth enough éffort, he can be effective in any period; that is, he can accomplish the
objective (by producing a unit of output). As shown in Chapter I11, the principal uses this

fact to design the optimal contract.

The subordi11ate‘s efficiency decreases as the time (and materials) used to complete the
task increases. In this mode!, where failure requires the subordinate to begin anew and he
does not learn from past failures, the actual efficiency (or actual partial productivity) can
be measured by the number of periods elapsed until the subordinate is successful or the

actual usage of (number of units of) raw materials. As one would expect, information

2Here, efficiency is equivalent to productivity. One can determine partial productivity factors, or output
compared to each individual input, or total factor productivity where output is divided by the aggregate
cost of all inputs (including the agent’s labor).

3Costs, revenues, or both.
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about the subordinate’s efficiency (at accomplishing the tasx) is incorporited into his

periodic performance evaluation and thus into his periodic compensation function.

There has been little theoretical work in the accounting field relating to the control
process anc{ management-by-objective  systems:* however, In many economic
relationships, individuals are hircd to accomplish goals: be it to properly build, write.“sell.
buy. or count something according to well-defined specifications. Such goal-based
relationships include job-shop operations and government, defense, and residential
contracts where the contractor must complete a construction or remodeling task. In these
scttings, the contractor must work until the goal is accompiished: so. the length of the

relationship is random.

I frame my analysis as a principal-agent model in which the agent is hired to achieve an
objective and, depending upon the derived contract, there is a possibility that the agent
\\jill not immediately accomplish the task. When the agent’s failure to achieve the
objective is costly to the principal, the agent may be required,l,lo act until the task is
succcsst‘ull:v completed: thus. in general. the optimal contract will have a random
length—as many of the relationships mentioned above do.® When the agent’s effort is
unobservable. an incentive problem exists because the principal desires thai the agent
work hard (to reduce the probability of paying failure costs), whereas the risk- ahd work-
averse agent prefers to work at a lower level of effert and risk the possibility of taking

additional effort at that lower level.

ssues like goal achievability have been addressed in the behavioral accounting literature—see Manzoni
and Merchant (1989) for example.

SFailure may be costly to the principal if the principal must contribute additional inputs for the next
attempt. or if the principal is penalized (each successiul period) for not delivering cutput on time.
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An advantage of this modeling approach is that it provides a natural setting to consider
issues like quality. productivity, ard learning in the presence of incentive problems. This
problem is, in fact, a model of stochastic quality and moral hazard where the firm’s
objective is to produce outpul at or above an exogenously-specified design standard.®
The firm’s proficiency at producing at this standard is known as its quality of
conformance. In this thesis. where the agent’s level ¢of effort determines the probability
of success. the sequence of optimal actions through time determines the firm’s ex ante

quality of conformance.

The facts that (1) the length of the optimal contract is endogenous and (2) the length of
the realized contract is random make the setting analvzed here fundamc;ntally different
from those modeled in other multi-period agency papers. like Lambert (1983) and
Ramakrishnan (1988). Here. the principal has a sense of urgency that is absent in those
papers.  That is. the principal must determine the optimal trade-off between (1)
compensating the agent to take high levels of effort in early periods to increase the
likelihood of accomplishing the goal sooner to save input bcosts and (2) the alternative of
paving lower levels of compensation over a potentially lpngcr period of time at the risk of

higher failure-related costs.

The result that the contract length will be finite holds even when the principal has an

inlinite planning horizon and even if the {irst-best contract has a (possible) infinite length.

7
i~

v

In fact. the maximum length of the sccond-best contract decreases as the level of
exogenous. failure-related costs increase. For high enough costs, a zero defect policy is

optimal. A zero defect policy (ZDP) guarantees first-period success by requiring the

agent to take the maximum level of effort in the first period. and there are situations when

“CGenerally: this design standard is a choice variable since revenue. input costs, and the probability of
successiully producing a unit depends upon desired level of functionality or consumer satisfaction,

O
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the second-best contract induces an immediate success through the implementation of a

ZDP, but {irst-best contract has an infinite-horizon.

;Thig result may seem surprising in the context of other multi-period agency papers like
the ones listed above. In those pa;ﬁers, the priﬁcipal determines the optimal way to
strycture wages and actions over the course of a fixed-length contract given the avéilable
information structure (ile., the informativeness of the available signals). When the length
of the contract is fixed, the benefits to. the principal increase if the number of periods can -
be increased. In finite-period problems, like Lambert (1983) and Rogerson (1985), these
gaihs result from the principal’s ability to smooth the égent’sconsﬁmption over a larger
number of periods and from the increase in the number of signals about the agent’s effort
levels, whereas in infinite-horizon problems, like Rubinstein & Yaari (1983) and Radner
(1985), the principal benefits by having long samples of past outcomes, i.e., better.
infor’matio_n, and by having the ability to p'unishut.he agent over long periods of time for:

any observed deviations (at least at low discount rates).

Fu*rthermdre, with specific assumptions regarding the agent’s utility function and’ the
periodic input costs, I find that when effort is unobservable, periodic wages decrease over
time (aé failure costs increase) and t‘he level of induced action iﬁcreases. For examiple,
when success is achieved early (at a low cost), the agent receives a bonus in the form of a
high periodic wage, whereas for a late success (associated with high failure-related costs)
he is subjected to performach penalties and thus receives a smaller (periodic) payment
for his services. Reichelstein (1992) discusses incentive schemes for government
contracts which follow a similar pattern. He analyzes a cost-plus-incentive-fee based
contract in which the agent’s net (cumulative) cc;mpensation (after deducting out-of-

pocket costs) is a decreasing function of total out-of-pocket costs; however, Reichelstein

‘ignores the multi-period nature of such settings—that failures cause cost over-runs and

+
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take time to correct. Thus, he ignores the time dimension of such contracts and thé fact
that the agent may feceive compensation in the interim periods prior to the completion of
the task. These interim payment may take the form of salaries, retainers, or progress
payments. They ar‘e feferred to as failure wages here. Althc;ugh these periodic wages are
decreasing over time, total compensation need not be decreasing in total costs (as it is in

Reichelstein’s paper).

I also extend the resﬁlts of the basic model by analyzing the case when the agent learns
over ﬁme. Learning occurs when the agent increases his proficiency over fime—when
the probability of success for a fixed ~level of effort (or equivalently, for a fixed level of
disutility) increases over time. When the employee is capable of learning, the firm must
determine the optimal trade-off between the effort and pay in eaﬂier periods and effort
and pay in succeeding periods when the employee is more efficient. Here, again, there is
a trade-off between getﬁng done sooner, in expectation, to save input costs and getting
done later to reduce wage-telated costs. In the standard, fixed-period model, this trade-
off—and thus the analysis of learning—is irrelevant because there is no sense of urgency
to complete the task. The efficiency gains can result from two types of learriing. First,
Y .
they can arise (almost) autonomously over time when little or no learning effort is
required; this type of learning is referred to as learning by experience. ‘:.Alternatively, they

t
can result from the deliberate attempt by the agent to improve his efficiency; this type of

learning is referred to as costly learning.

In Chapter 1V, I analyze learning by experience in both the observable and unobservable
action cases (I aiso present an example of a costly learning problem in Appendix 4)7. In

the case where action is unobservable and the agent commits to completing the task, the

7A separate literature review of learning-related papers appears in Chapter 1V.

«
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- main result of the finiteness of the contract length holds, and because the learning procéss
affects costs in a similar mannei in both the observable and unobservable action cases
‘without commitment, I obtain the same results in both cases: (i) holding future efficiency
levels constant, agents who are more efficient through past training or experience work

harder in a period than inefficient agents, and (ii) as the amount learned over any future

interval increases, the optimal action at the beginning of the interval decreases.

The first result of the no corﬁmitment case may seem somewhat surprising since one
might expect that less efficient agents would be required to work harder to compensate
for their inefficiency. yet it means that there are two benefits from hiring more efficient
agents: (1) for fixed effort levels, they are more likely to succeed, and (2) in equilibrium,
they work harder. Thus, this result may provide at least some explanation as to why
~domestic corporations are interested in improving the eduqation _System in the United
States; and also wh§ anecdotal evidence suggests that German firms tend to have high

quality but seem to place little emphasis on traditional quality programs.?

The second result, that as agents learn more in the future, the optimal level of effort in the
current period decreases, is more intuitive. As the agent becomes more efficient in the
future, costs in those periods decrease; therefore, marginal expected failure costs in prior

periods decrease, and so activities undertaken to reduce those failure costs decrease.

With these two learning results, it is easier to understand the nature of training when the
training activity derives no current productive benefit. In fact, I define training to occur
when the owner instructs the employee take no productive effort in the initial period(s).

The agent must still be hired during the training period and, depending upon his utility

8See “The Riddle of German Quality.” by Jerry Bowles, in Across the Board, published by the Conference
Board, (January/February, 1993). )
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function, may require compensation during that time.” It is assumed that the agent learns
by watching the process fail or by watching a similarly costly event, like a seminar. Note
that training is optimal when the agent is Very inefficient initially butcovercomes his

inefficiency repidly.

Chapterb'lvl..provjdes an in-depth literature review. Chapter III. contains ‘a general

n

description. gf the agency setting and analyzes the observable-action and unobservab}eé
action cases without learning. Chapter 1V. discusses relevant leafnirig—related papers and
the analysis of the problem when the agent can learn by experience and Chapter V.
summarizes the results and discusses pl'anned future research. Except where noted,

¢ \

theorems are stated in the text and then restated and proved in Appendix 2.

Chapter I - Literature Review:

The control problem of achieving objectives in a stochastic environment with an infinite
planning horizon is obviously a multi-period one. While there are no other papers which
consider this specific problem, several pabers have analyzed aspects of multi-period
agency relationships. In these papers, the agency’s duration, whether infinite or finite, 1s

assumed exogenous and then the characteristics of the optimal contract are derived.

,‘“
Radner (1981) was one of th§: first papers to present an analysis of a finite, multi-period
agency. In it, the author studies noncooperative equilibria of multi-period relationships
~ which produce (what appear to be) cooperative outcomes. Radner’s main result is that for
a (long) "T-period relationship, for any single-period, Pareto-optimal, cooperative

equilibrium that dominates a single-period, Nash (noncooperative) equilibrium and any

10

=
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positive nun‘lber, g > 0, thére exists ;cm e-equilil;rium of the T-period relationship that
yields Bo’;h players an average expected utility greater than their utilities in the single-
period, cooperative equilibrium minus €.2 So, for long, finite relationships, cooperativc;s
outcomes can be produced from an approximate noncooperative equilibria—or for any &,

there is a (finite) T large enough so that the noncooperative equilibria have cqoperative

outcomes in each subgame.!?
' . N
To sustain such relationships. there must be a method to 1) detect cheating or shirking,
and 2) punish such (dysfunctional) belmwor The method used by both parties to punish
antisocial behavior is referred to as a rrigger strategy. It involves cooperating as long as
‘onc infers that the other party is cooperating. For the risk-averse agent, such a strategy is
easy to formulate: _éhoose the first-best level of §ffon as long as the ﬁrincipal offe;s a
~Constant wage (over outcomes); if the principal imposes risk, choose the second-best
level of effort for as long as such a contract is offered. Alternatively, the prin¢ipal offers
the first-best wage until he can detect shirking on the part of the agent. If shirking is
detected, he then offers the sccénd-best wage scheme for the remaining periods of the
contract; thus, such a strategy is “harsh™ in the sense that once shrinking is inferred from
the history of past outcomes, cooperation dissolves for the remainder of the relationship.
So, the inference rule must balance the costs of allowing the agent to shirk—by using a
wide range of acccpi@le average outcomes—with the_costs‘ of eliminating cooperative

behavior (when it should not be eliminated) with a narrow range of acceptable average

outcomes. 1Y

9An g-equiiibrium is an approximate equilibriurh when each player’s sequential move is wnhm g in utility -
of being the player’s best response.

19Backward induction fails to unravel such an cqunllbrlum because the parties are assumed to evaluate
long-term average utility over the entire length of the contract—not just the remaining length; so, the
* marginal benefits of defecting in the last period are small for a large T, and cooperation is maintained.

3
11 o



Achieving Objectives

Rubinstein and Yaari (1983) also consider a multi-period moral hazard model. They
attempt to explain the observation that insurance companies offer discounts to clients
;with good records (with fespect to past claims) by arguing that the discounts provide a'
mechanism to allow both parties to counteract the inefficiency which arises from the

moral hazard problem.

They try to de-emphasize the role of periodic (incentive) wage schemes by concentrating
on the time structure of the problem and on the case where the agent’s actions in period
do not affect compensation in period f; thus, they study full-indemnity insurance
contracts, i.e., contrémts without deductibles. They do allow the price of the contract to
vary over tifne; so, although the agent’s actions do not have short-term implications, they
do have long-term implications. They find that giving the insurer (long-term) pricing
flexibility is sufficient to eliminate the inefficiency created by the moral hazard
problem—the unobservab_le?l_gvel of care that the insured.should undertake—as ldng as

the insured is risk-. verse. Thus, their problerﬁ is similar to Radner’s (1981), but, as will

be described below, their solution provides more flexibility.

Their result is obtained by assuming that utility for both parties is caléulated (and
evaluated) as the long-term expected periodic payoff, and that the insurer commits to an
announced. long-term strategy. This strategy requires him to .analyze the history of past
claims to make certain that, on average, the percentage of claims is consistent with the
percentage expected if the proper (first-best) level of care was exercised. If it is, then the
insurer offers the agent a “no claims™ discount price—or more precisely—an expected
claims, discount-off premium. If the average level of claims is too high, then the agent is
charged a higher (penalty) premium until the history of claims is consistent with the
proper level of care. So, unlike Radner (1981) in which his trigger strategies were
harsh—and. lasting—in Rubenstein & Yaari, the principal has the flexibility to

reintroduce a cooperative pricing policy after a period in which the discounts had been
=
RN
12
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eliminated. In the long-run. the insurer will have sufficiently large samples on which tq
make inferences about the agent’s‘average level of care as well as the flexibility of an
infinite horizon over which to penélizesthe agent. Since the agent does not discount his
periodic utilities, such penalties—which can only be applied in the long-term—induce the

agent to take the first-best level of effort.

Radner (1985) studies an infinite-horizon, repeated game where the 'parties make
decisions based upon their long-run average expected utility, and the agent discounts
periodic utility. He finds that efficient (first-best) behavior is a Nash equilibrium in the
inﬁnite-hdrizon game if it is Pareto-superior to the one-period Nash equilibrium.
Employing the same e-equilibrium concept tllat he applied in Radner (1981). he finds that
for sufficiently low discourt rates—where the parties discount their future expected

utilities—there is an e-equilibrium which approximates the first-best outcome.

Again, in this paper, the principal can eventually detect any systematic shirking on the
'pan of the agent by comparing the agent’s average output with what would b¢ expected if
the agent had .been selecting the first-best level of effurt in each period. A simple
dichotomous contract is optimal in which the agent is offered the first-best sharing rule in
period 7 if his average performance in periods one through ¢ -/ has been acceptable and a
penalty contract if his performance has been unacceptable. With low discount rates, the
future penalties that can be imposed upon detection and during the infinite horizon are
sufficient to prevent the agent from shirking. Likewise, with a long history of past
outcomes, the uncertainty about the agent’s hidden actions can be completely divefsiﬁéd

away and so the incentive problem can be completely eliminated.

Lambert (1983) considers finite, multi-period relationships where the number of periods

are not large enough to induce cooperative behavior. He examines the role of long-term .

13
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contracts in cogtrolling moral hazard problems wheﬁ both the risk-averse principal and “
risk- and work-averse agent precommit to the‘contract.” As in all these papers, the ﬁmral '
hazard problem exists because the principal cannot perfectly infer the level of effort from
observations of periodic outcomes. Like Radner and Rubenstein and Yaari, Lambert
finds that periodic wages will depend upon the current outcome as well as the sequence
of past outcomes since such a contract optimally reduces the risk imposed on the agenf by
allowing the prinéipal‘ to make inferences based upon a larger sample of the agent’s‘
chosen acticns (rather than just on one period’s). Lambert labels this as the
diversification effect since if the agent chooses a constant level of effort each period,
periodic outcomes would be independently and identically distributed, and the sample
variance woﬁld decrease as the number of periods inérease thereby allowing the principal
to make more precise inferences about the agent’s average level of effort. Because wages

are a function of all outcomes to date, periodic actions will also be parameterized by the

past sequence of outcomes.

Unlike in the cases where the relationship lasts a (relatively) long period of time—even
an infinite period of time—in a problem with 7 (finite) periods, the principal cannot
(completely) eliminate the uncertainty regarding the agent’s sequence of effort choices,
and at any time /, the principal has only T - ¢ in which to penali%e the agent for shirking.
Thus the optimal contract is more complicated than a simple dichotomous one, and it will
not be simply a function oll"lhe average outcome through period 1.

Somewhat related to this thesis, Lambert notes that, “The diversification effect suggests
that the more periods the agency relationship lasts, the more the incentive prbblem is

alleviated. In fact, we can show that there is value to extending the contract.” These

ITHe also investigates the problem that arises whén the agent does not precommit to work for the duration
of the contract.

14
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gains result from th¢ prinéipal’s ability to sméolh the agent’s consumption over a larger
number of periods and from the increase in the number of signals about the agent’s effort
levels. However, this result does not obtéinr here where the agent must accomplish an
objective and where failure to do so is éosﬂy to the principal; here, the principal must
determin:e the optimal trade-off bet\xeen (1) compensating the agent t to take high levels of
effort in eat!yv periods to increase thejllkellhood of accomplxshl‘x:lg the goal sooner to save

input costs” and (2) the alternative of paying lower levels of compensation over a

potentially longer period of time at the risk of higher failure-related costs.

Rogerson (1985) also studies a multi-period moral hazard problem and analyzes the
relationship between wa\ge's and expected wages in consecutive periods. He finds that if
the inverse marginal utility function is convex (concave), then conditional on the first
period’s outcome, the first period’s wage is greater than or equal to (less than or equal to)
the expected second period wage; therefore, the unconditional expected first wagé is

greater than or equal to (less than or equal to) the expected second period wage.

Lambert (1985) investigates a similar issue related to the sequence of wages and actions
during a contract. He shows that income smoothing may be optimal where the agent
“smootlﬁes" real earnings in a two-period model by trying to hit a two-pe.iod ex ante
target total; thus, he notes that an income smoothing strategy would make second-period
effort a decreasing function of the first period’s outcome, and that this would induce a
negative correlation between the first and second period outcomes. By assuming that the
agent has a square root utility function, he provides an example where the optimal

compensation scheme offered by the principal causes the agent to ‘smooth’ output.

However, supplementing the work of Rogerson, Ramakrishnan (1988) shows that this

smoothing result is not true in general. In fact, income acceleration—inducing the agent

i
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to take a higher level of effort in the second period of a two-period contract to increase
expected periodic income when realized first period income is (relétively) high—may be
optimal. Ramakrishnan notes two costs for the principal associated with inducing
increased effort: (i) a weq/fh effect, or the compensation for the additional effort, and (ii)
the risk effect, or the risk premium for the additional risk introduced by hlaking
compensation scheme more pronounced. He notes that if the agent’s utility function
exhibits decreasing absolute risk aversion (DARA), then an increase in util‘ity (for wealth
only, not net utility) from paying (expected) higher wages may in fact reduce the risk
premium that needs to be paid to the agent. If these risk effects are greater than the
wealth effects, then acceleration could be opiimal. In fact, his main result shows that the
optimality of smoothing or acceleration depends upon the shape of the agent’s marginal

inverse utility function. If this function is convex, income smoothing is optimal. If it is °

concave, then there exists a problem where income acceleration is optimal.

Along é different vein of the theoretical accounting literatﬁre, Reichelstein (1992)
discusses incentive schemes for government contracts, specifically a cost-plus-incentive-
Jfee based contract in which the agent’s ret (cumulative) compensation (after deducting
out-of-pocket costs) is a decreasing function of total out-of-pocket costs. The purpose ofr v
his article is to show that such an example is an application of agency theory to contract

design.

Such a contract turns out to be (somewhat) similar to ti.e optimal contracts found in this
thesis; however, in his applicélion, Reichelstein ignores the multi-period nature of such
settings—that one cause of cost over-runs is the failure to complete subgoals, or specific
tasks associated with the project, and that such failgres take time to correct. Thus, the
time dimension, which is a contractible variable, is ignored for evaluation purposes as

~

well as consumption purposes. In fact, we observe that in many settings, the agent may
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receive compensation in the interim periods prior to the completion of the task. These

A Y
interim payments, which may take the form of salaries, retainers, or progress payments.
are referred to as failure wages here, and although they are decreasing over time, total

compensation need not be decreasing in total costs (as in Reichelstein’s paper).

Like my analysis, Fudenberg, Holmstrom, and Milgrom (1990) provide a possible
explanation for the observed variation in the length of long-term contracts. They show
that long-term contracts are valuable only 1f op_timal contracting requi'res‘commitment to
a plan today that would not otherwise be adopted tomorrow. They show that such
commitment is unnecessary if the following conditions are met: (1) all public information
can be used in the contract, (2) the agent can access a bank on equal terms with the
principal, (3) recontracting takes place with common knowledge about technology and
preferences, and (4) the frontier of expected utility payoffs generated by the set of

incentive compatible contracts is downward sloping at all times.

-The motivation for their analysis is to attempt to explain the observed variation in the

length of employment contracts. They note that long-terin contracts are advantageous if
these contracts inicrease a risk-averse agent’s ability to smooth- consumption over time:
however, thcy observe that (it seems that) high\er paid workers have greater access to
capital markets than lower paid workers do: so, iower paid employees should be involved
more often in long-term contracts than higher paid employees, but this hypothesis seems
to contradict empirical observations. Thus. they conclude that long-term contracts must
occur tb alleviate problems caused by information asymmetries, and that these
asymmetries are more prevalent at higher levels than at lower ones. That is, the authors

note.

17
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“Many more of the activities of managers than of factory workers or salesmen
contribute directly to future [periods’] production in ways that are not
reflected in current pddformance measures. Long-term contracts, which await
the arrival of additional information on current activities, are fmponant in
managerial contracting but not in contracting with workers for whom current
observations are sufficient for evaluating current performance.”

<
So, the authors conjecture that the benefits of extending the contract’s length are
posiliveAly related to the length and extent of the information lag, and so they note that one
must balance the costs of increasing thev contract’s 1éngth with the benefits of
~ incorporating additional information. However, the determinaﬁon of the optimal length

of the contract is outside the scope of their analysis.!?

Joskow (1987) studies the variation in contract lengths between coal suppliers and
electric utilities. He provides empirical evidence that supports the hypofhesis that these
parties make long'er commitments (and rely less on repeated negotiations) when
relationship-specific assets are important. Such commitments guard against one party’s
ability to act opportunistically once the other has sunk costs into an asset which has
limited alternative uses and mobility. In this thesis, Corollary 3.2 provides an alte'mative

explanation for varying contract lengths: the optimal maximum length of a goal-based

relationship is a nonincreasing function of exogenous failure costs.

I2In this thesis, it is shown to be an inverse funstion of the periodic input cost.
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Chapter I1I - Analysis of the Problem (wnthou learning):

III.A. Basic Assumptions:

[ frame my analysis as a multi-period, principal-agent model in which the agent is hired
to achieve an objective and, depending upon the derived contract, thiere is a possibilitél
that the agent will not immediately accomplish the task. When the agent’s failure to
achieve the objective is cost]y to the principal, the agent may be required to act until the
task is successfully completed: thus, in general, the optimal contract will have a random
length. When the agent’s effort is unobservable, an incentive problem exists because the
principal desires that the agent.work hard (to reduce the proba-bi,lify of paying failure
costs), whereas the strictly work-averse agent prefers to work at a lower level of effort

and risk the possibility of taking additional effort at that lower level.

Formally, I assume that the principal desires to hire an agent to produce one unit of good
- output and that there are two possible levels of quality: good and bad. If the principal’s
expected utility in any period is nonnegative, then he wants the agent to act until one unit

of (good) output is produced.

For simplicity | assume that the stochastic productioh function in. period r—the
probability of producing a good unit in period r—is the’végent’s action, a, € [0, 1] and that
it is poésibl‘e for a, to equal 1. «a, = 1 in the action set means that the principal knows
(with certainty) that the agent is capable of accomplishing the task.!3 A,zero defect

policy occurs when the optimal first-period action is equal to one, when a; = 1.

I3When it is optimal for the agent to do so.
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The agent’s total utility function is assumed to be additively separable in wealth and
effort and is constant and additive over time. Let U() denote his- periodic utility for
wealth and V() his perié‘cﬁc disutility for effort. U() is strictly concave, af]d, unless
otherwise noted. V() is strictly convex. Neither the principal norv the agent discounts

future utility although the results are unchanged if they do.

When effort is observable, the agent receives a periodic- wage, w,. When effort is
unobservable, if the agent produces a good unit in period r; he receives a SL;CCGSS wage, g,
> (. which depends upon ¢; and the contract ends. When he fails (by producing a bad unit
in period /) he receives a time-dependent failure wage, b, > 0; the contract continues; and
the principal must supply another unit of input at a cost of ¢ > 0.!4 The incentive problem
‘exists because the risk-neutral principal wants the agent to work hard to reduce the
probability of paying an additional ¢ dollars next period, but, ceteris paribus, the strictly

risk- and work-averse agent desires to take low levels of effort and risk the possibility of

. repeating the task at those lower levels of effort.

I11.B. Observable Action Case:

When effort is observable .and the worker acts as directed, then he is not responsible for
the quality of output, and thus must be adequately compensated for performing failure-
related work. i.e.. for work after the first production attempt. If the agent is strictly work-
averée, then his commitment status is irrelevant, and either a ze.ro defect policy is optimal
or a stationary policy is-optimal. The followiﬁg theorem presents characterizations of the
optimal contracts in both the committed and uncommitted agent cases. Here commitment

by the agent means that the agent promises to work until a success is achieved, and

14The assumption that exogenous costs are constant over time is for simplicity, only. In general, periodic
failure-related costs may increase, hold constant, or decrease over time.
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commitment by the principal means that the principal promises to employ the agent only

until a success is achieved (and no later).!$

Theorem 1: In the first-best case—with or without precommitment by the
agent—if the agent is strictly risk- and work-averse, (a) a zero defect bolicy is
optimal if ¢, the constant periodic input cost, is greater than or equal to ¢f where

cf satisfies

¢’ =w'(1)-w(1), (1)

and w(a), as described below, is the function which describes the wage required

to induce the agent to participate and take action level a as directed.

- (b) if an interior solution obtains, the optimal contract is a stationary policy.

()  Without commitment, it is described by:

w'(@*)=———-=. (2)

where {a*, w*} is the optimal periodic action-wage pair and both variat’;i"‘és“

are independent of f, and w(a) is a composite function described below.

(i) With commitment, the optimal pair {a*, w*} is described by:

(3)

3The necessity of this parenthetical qualification is explained in the next section.
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a
V'(a*)

4)

Please note vthat equation (2) or both (3) and (4) combine to characterize the

solution.

The part (a) of the above theorem follows directly from part (b); thus, I begin by

discussing part (b.i). Theorem 1.b.i is proved by recognizing that without commitment, -

the principal’s problem is a simple stochastic dynamic programming one. The
environment is stationary and Markovian; after a failure occurs, the principal’s costs,
benefits, and available actions are all unchanged, and the past history of performance has
no effect on the current probability of success. So, the 6ptimal action-wage pair, {a*,

-

w*}, must satisfy the folldwing periodic participation constraint:

U(w*) = V(a*)20. (5)

Since the principal will never overcompensate the agent, constraint (5) will alvays hold
with equality; thus, we can define a function w(a):

w(a)=U"[V(a)]. | (6)
Since the agent’s inverse utility function, U-/(), and disutility function, V(a), are both

[ . - - . } . ) - . .
increasing and strictly convex, the composite function w(a) is increasing and strictly

convex. Thus, w(a) is unique for every a, and constraint (5), through the function w(a),
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may be substituted into the principal’s objective function to yield the following

problem:!6 ' . '

maxqr—=-—-——=1%, (7)'

Differentiating this problem with respect to a gives condition (2). Condition (2) is
similar to the first-order conditions which describe the economic conformance level in a
quality cost analysis (see Fine (1986) for example). Quality costs are usually divided into
four categories: prevention, 'appraisal, internal failure, and external failure.!” Here, the
action, a. is both a prevention activity and the economic conformance level, whereas
expected failure costs are easily identified by rearranging the pfincipal’s objective
function:‘s

w(a)+c+(1——a)LW(a12

(8)

a

expected failure costs

Within a quality-cost framework, condition (2) states that at an (interior) optimum,
marginal prevention costs equal marginal failure costs. In one respect, this model is more
general than the typical economic conformance level model because there is no guarantee
that first-period failures can be corrected immediately at a certain cost—theresis a chance
that the failure-related activities will fail which is why the problem has an infinite

horizon.

16As developed in the proof of Theorem 1 in Appendix 2.

I7prevention costs relate to those activities which increase the likelihood of success (i.e., reduce the
probability of failure); appraisal costs relate to the inspection activities which attempt to discover defective
items (failures); internal failure costs involve those activities concerned with correcting or disposing of
failures discovered before shipment; and external failure costs reiate to correcting or disposing of failures
which were discovered after shipment. '

18 Alternatively, a can be interpreted as the level of inspection work, and ¢ as the cost of a Type Il error.
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Theorem 1.b.ii shows that if the agent is strictly work-averse, then the solution to the
problem with commitment is identical to the solution with commitment. Thus,
commitmerit by the agent is not valuable to the principal; that is, the principal caﬁﬁpt take
advantage of the additional degrees of freedom. This result occurs because the égent’s
total utility function is concave in both wealth and effort; thus, requiring the agent to take
a coﬁstam action and paying him a constant amount each period minimizes the principal’s’

expected costs to succeed.

The validity of part (a) of Theorem 1 follows from the following (very intuitive)

observation: as the principal’s exogenous failure costs—that is, the nonwage costs

N

increase, his-desires for early success increase (and thus he instructs the agent to take a
higher level of effort), and thus we have lemma 1.1 which is shown for the case of

constant (failure-related) input costs.

Lemma 1.1: As the level of (future) production costs increases, the optimal

prevention action increases, i.e.,

'(c :————1———> )
@(c) a(c)w"(a(c)) ° ©)

The following graph provides an example of lemma 1.1 where the agent’s utility

functions are defined to be Ufw) = In(w) and V(a) = ae! 4.

O
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+ Graph 1. First-Best Action as a Function of Cost
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Note that in Graph 1, a zero defect policy is optimal at ¢ = 901.89.1% This is the point, ¢/,
described in part (a) of the theorem for which a ZDP is optimal. In other words, to
paraphrase quality “guru” Philip Crosby, quality—in terms of quality of conformance—

may indeed be free with high enough failure-related input costs.

Theorem 2: When a ZDP is optimal in the first-best case, it is also optimal in the
second-best case; however, the converse is not true. (With unobservable effort,

aZDPis optimél at input costs of less than cf.)

The validity of this theorem is casy to see. The first-best contract must (at least) weakly
dominate the second-best contract. When a zero defect policy is optimal ifi the first-best
case, the same contract can be induced in the second-best case since the support is not

fixed at a; =1 (any deviations can be discovered with positive probability). Every other

19 Although the wage to induce a ZDP is only 88.38, because the principal is a risk-neutral, expected-utility
maximizer a ZDP is not optimal until periodic costs are greater than or equal to 901.89.

25



Achieving Objectives

feasible, unobservable-action contract imposes risk on the agent since, in these contracts,
the agent’s wage is outcome-dependent, and there is a chance of failure, a ; <1. Since the
agent is risk-averse, and the principal is risk-neutral, each of these contracts is dominated
by the first-best contract which, in this case, is a ZDP (and which is attainable in the
"second-best case). That the converse is not true can be seen by noting that in the second-
best case, a ZDP is optimal at input costs of less than ¢/'because at these levels of cost it
is cheaper for the principal to compensate thé agent with a fixed wage for taking the
highest level of effort than it is for him to impose risk on the agent (to induce the agent to

take a relatively high level of effort but less than the maximum level of one).

" The following graph shows ¢/, the minimum level of cost to induce a ZDP in the first-best
case, when the agent’s utility functions are U(w) = In(w) and V(a) =aePa and B €[0, 1.5].

When 3 = 1.5, a ZDP is optimal when inpﬁt costs are greater than 901.89 as in Graph 1.

 Graph 2: Cost Required to Induce a ZDP
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In summary, in the first-best case, we observe that when the agent is strictly risk-averse
and strictly work-averse, (1) commitment status is irrelevant; (2) an interior optimum is
stationary so the optimal contract consists of a series of identical, single*period contracts

which may go on forever; (3) there exists a high enough level of cost to induce a ZDP;

#
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and (4) when a ZDP is optimal in the first-best case. it is-also optimal in the second-best

case, but the converse 1s not true.

I[I.C. Unobservable Actions (Committed Agent):

When effort is unobservable and the agent does not precommit to complete the task,
either a ZDP or a series of identical single-period contracts is optimal; this result occurs
because there are only two possible outcomes and because the relationship ends when a
good unit is produced. Examples of such contracts are piece'-work or sales commission
contracts. Because these contracts are derived in a manner similar to the first-best
contracts, they are not presented here; instead, an example of one is presented in
Appendix 3.1.

With precommitment by the agent, the agent agrees to work until the task is successfully
- completed. This differs from the other multi-pefiod agency papers which focus on the
agent either (1) committing to work for a particular number of periods or (2) agreeing to
participate in a sequence of contracts. With this type of precommitment, the agent is
responsible—held accountable—for completing the task. Because the contractual
relationship ends once the objec(;;ve has been met, the actual length of the relationship 1s

random; so, unlike in other multi-period models, the principal is not responsible for the

’

ageni’s welfare for fixed length of time.

Precommitment by the principal means that: (1) the principal commits to employing (and
paying)-the agent a periodic wage—which will vary over time and outcome—until the
project is completed, but (2) he, the principal, cannot credibly commit to compensate the

agent in periods after a success has been achieved.?0

;20The above definition of precommitment allows for the existence of a solution to the problem. Without
this specification, there is no optimal contract because there is no minimum expected cost for the contract.
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The principal’s profit maximization problem—written in recursive form—is:

max,_ {a,(r-g,)+(1-a,)(¥, -b,)-c} (10)

{a1.9:.b, }‘:1

subject to:
Participation:

a]U(g;)+(1—a;)(U(b;)+I])—\é(:a;)20 an
'ncentive Compatibility:2! (for every t)
(g:)-U(by)-1,-V'(a})=0 (12)
Where a, 1s the agent’s action in period 1.c>0is the périodic input cost, and g, > 0 and 5,

> 0 are period 1’s success and failure wages for producmg good and bad output in period

1, respectively, and

T, :a;U(g;)+(1—a;)(U(b;)H“,)—V(a;) (13)
Ry :at(r“gt)+(1_at)(wt“bt)_c (14

are the agent’s and principal’s conditional expected future utilities given that failures

have occurred in all periods prior to period 1, respectively.

The main result of this section is the following characterization of the optimal contract.

To see this fact, consider the case where the principal may compensate the agent for all periods after a
success. Suppose he instructs the agent to succeed in the first period (which minimizes input costs) and
then compensates the agent some amount w(7) for T periods to ensure participation:

T Uw(T)) = V(i)

When the agent’s periodic reservation utility is zero, no finite 7 solves this problem since as T — oo, we
know that Ufw(T)) — O which means that w(T) — 0; so, the cost to induce a ZDP goes to zero.

Besides using the above definition of precommitment, setting a positive reservation utility, adding
discounting to the problem or allowing for negative utilities will eliminate this nonexistence problem, and
thus a solution will exist when either (1) the agent has a higher discount rate than the principal, or (2) the
lower bound of the agent’s utility function is less than the periodic reservatlon utility. '
21Using the first-order approach.
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o

Theorem 3: Aésﬁme that Wages are constrained to be nonnegative, that periodic
failure costs are positive, and that the strictly risk-averse and strictly work-averse
agent's utility function satisfies: U(0) = V(0) > -, then the optimal contract will
have a finite ma;<imum length, and success will be assuréd by the end of the

contract, i.e., there exists T* such that a;.= 1.22

" This result tells us that even with an infinite horizon, the maximum contract length is
ﬁn-ift’éf "and ‘when the principal knows for certain {hat the agent is- capable of
accomﬂishing, hu'e ﬁS“e;;.’this information to set a deadline By which time the agent must
succeed. Do we observe such truncated contracts in practice? Yes; Some real-estate
agencies guarantec to puréhasc a property (at a specified price) if their agents cannot sell
it within a particular period of time, and similarly, for some underwritinig activities,
investment bankers commit to buying all unsold shares. Similarly, we see that when
some automobiles are deemed lemons, their manufacturers repurchased them.. For
example, after four recalls of its 1990 minivans, Nissan repurchased and destroyed 900 of

them.23 The following corollary extends the second result in this theorem to situations in

which the agent’s utility is unbounded below.

Corollary 3.1: If a finite-length contract is optimal when the agent's utility

function is unbounded below, then a;. = 1.

Thus. at some point in time the agent is held accountable for his actions and, therefore, he
must ensure success by that time, denoted 7*. As Corollary 3.2 shows, 7* will depend

upon the periodic gii,lﬁure cost, c.

22This result also holds when the agent is paid only a wage upon success, i.e., when there are no interim

failure wages.
23The Wall Street Journal (12/9/93).
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Corollary 3.2: As c increases, T* the maximum length of the contract,

decreases.

This result is rather intuitive. Consider a cost-level ¥ which induces é contract of length
T* As ¢ increases above y, the expected costs of failure increase. This increases the
principal’s desire (and his willingness to pay the agent) for the agent to exert more effort
in earlier periods to reduce these expected costs. Since the principal operates in an
infinite horizon, one can consider the age;ﬁ’s infinite vector of actions. At cost level y,

the vector of actions is:

.

~

‘a
- !
LT

As c increases, ar«_; — 1. As costs increase further, this process continues until a ZDP is

i [31,3?,_@3, ..... I A B

optimal. Thus, this result provides an alternative explanation for Fudenberg, Holmstrqm,
and Milgrom’s (1990) observation that, “Long-term contracts enjoy an obvious advantage
if they expand the agent’s ability to smooth consumption over time... But such a
rationale can hardly explain the observed variation 1in the length of employment

contracts.”

Because of this cost of extending the maximum “length of the contract, the resuits
presented here differ substantially from those found in other multi-period, moral hazard
papers. As was mentioned in Chapter I1, in those papers, the principal takes advantage of
additional periods to try to eliminate the agency costs. For example, Holmstrom (1979)
notes. “When the same situation repeats itself over time, the effects of uncertainty tend to
be reduced and dysfunctional behavior is more accurately revealed, thus alleviéting moral
hazard.” And Lambert (1983) states, “The. diversification effect suggests that the more
periods the agency relationship lasts, the more the incentive problem is alleviated. In

fact, we can show that there exists value in extending the contract.” Indeed, this
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argument extends to the inﬁﬁite-horizon agency problems, where Radner (1985) and
Rubinstein & Yaari (1983) show that the first-best outcome’ can be attained by taking

advantage of the entire horizon.

Using the same utility functions as previous examples in Sections 1II.B and II1.C, the
following graph shows the maximum length of the optimal contrac‘t tor a series of costs €
[1,901].2* Recall that the periodic cost to induce a ZDP in the first-best case was 901.89,
whereas here—in the second-best case— the minimum cost thich induces a ZDP is

224.25: so, in the range [224.25, 901.89] a ZDP is optimal in the presence of moral

- hazard, whereas without moral hazard the optimal contract has a possible infinite length.

Graph 4
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24Given that the principal’s revenue is greater than total expected costs and so the project is worth
undertaking.
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Here, however, it is the ﬁnitenesé of the contract term and the threat of being forced to
take the highest level of effort at the end of the contract—when a;+ = 1—which in ﬁly :
examples induces the agent to work harder in earlier periods to try avoid that high cost
~(i.e.. disutility). It is this mechanism which helps alleviate the moral hazard problem
since it aligns the agent’s desires for an early success with the principal’s. Thus, the
agént responds not only to the brospective wage schedule, but also to the prospect of high
levels of future disutility from effort. One expects that as the deadline approaches, th:?
agent is willing to work progressively harder to avoid the ultimate penaity of -}(/). The

following graph shows the sequence of second-best actions and wages for the same

agency that was analyzed in Section III.B of this Chapter.

Graph 5

An Optimal Contract (T* =4)
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We observe in the numerical example that periodic success and failure wages are

decreasing over time. In -fact, this leads to the following theorem, which shows that

(98]
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periodic failure wages are (always) a decreasing sequence in time, and the following

conjecture.

Theorem 4: When V() is strictly convex, failure wages, by, are a decreasing

sequence in time (and g; > b_;).
Conjecture 4.1: Success wages are decreasing over time.
Conjecture 4.2: Actions are increasing over time.

In practice we observe that success wages are decreasing in time since it is often the case
that bonuses are paid for early successes (or, equivalently, for keeping costs below
¢ :pectations), and performance penalties are imposed for completion delays or cost over-
runs. However, decreasing failure-related wages are more difficult to observe in practice
since they take the form of salaries or of retainers or, depending upon the nature of a
long-term project. of progress payments. The following corollary shows that for many

commoen utility functions. expected wages are also a decreasing sequence in time.
Corollary 4.1: If the agent's inverse marginal utility function, U—() is linear or

\

convex, then expected periodic wages are decreasing over time.

Among the functions for which this corollary holds are the logarithmic utility and square

root utility. If we consider the class of HARA utility functions which is defined by

(W)=(1_Y)[B—W+n}y (15)



. Achieving Objectives

where w is the agent’s wealth and y# 1 and > 0, then Corollary 4.1 holds wheny < % or
y > 1. This set of parameters corresponds to those which induce the Investigation of
lower-tailed performance in Baiman and Demski (1980) and the optimality of income
smoothing in Ramakrishnan (1988).

Showing that expected periodic wages are decreasing for any (general) utility function is
not as innocuous as it might seem (given Theorem 4 and Conjecture 4.1). To see this,

recall the definition of I',, the agent’s conditional expected utility at time ¢:

-

Iy=aUg)+(1- a;)(U(b;) + Ft)— V(a).

From Lemma 3.1, we know that the agent’s periodic expected utility, I',, is decreasing in
. Theorem 3 tells us that since the highest possible level of effort occurs in the last
period, T*, ceteris paribus, as f increases, I, will decrease. So, it is possible for expected
wages to increase, but for expected utility to decrease since expécted utility includ;:s the
disutility of effort and the likelihood that a higher disutility of effort will be incurred in
the future. In fact, it these above teatures of the solution which make conjectures 4.1 and

4.2 conjectures rather than theorems.??

The results in this section dep¢nd critically on the assumption that the agent is strictly
work-averse—that his disutility function, V(a), is strictly convex. The following theorem
illustrates that the prihcipal's problem (with respéct to the agent) is not just a
consumption smoothing problem: it is also an effort-smoothing problem when the agent

has convex disutility.

23 Appendix 3 provides examples using a variety of utility functions which provide some support for these
conjectures.
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Theorem 5: Assume 'V(a) = a, then the optimal contract has the following

characteristics:

1. by=by=-n =bre1=9gr1=w(0).
2. a; = 32 = e = aT"-1 = O, and ar-= 1‘ and so *

3. T* solves the following program:

min{t{c +w(t)]} (16)

subject to:

tU(w(t))-120. | (17)

where w(t) is the periodic wage required to ensure the agent's participation when

‘no effort is taken until period t and then the maximum effort is required.

However, as long as the agent is strictly risk-averse, the following theorem holds, and this
result allows us to prove conjectures 4.1 and 4.2 when T* = 2—which would occur at

costs slightly below the minimum level which induces a ZDP in the second-best case.

Theorem 6: If ar. = 1, then by.; = g7« (b7~ is the failure wage paid in period T+

.

- 17 and gy is the wage paid in the final period, T*).

In other words, Theorem 6 states that the wage paid immediately prior to the deadline (in
period 7*-1), the wage paid at the deadline (in the final period, T*.) are equal because at

this point there is no reason to impose risk on the agent; success is assured in period T*.

Corollary 6.1: If the maximum length of the optimal contract is two periods, then

conjeétures 4.1 and 4.2 are true.

(V%)
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The proof of this corollary is simple: if given the agent’s utility function and the periodic
costs of failure, ¢, the maximum length of the optimal contract is two periods, i.e., T+ = 2.
then it must be that a;,* < a,* = 1, and from the first period’s incentive compatibility
constraint (equation 11) and Theorem 6, we have g,*> b;* = g,*: Note that for any risk-
and work-averse agent, we can find a sufficiently high cost parameter, ¢, to make 7+ = 2.
Thus, it seems that the relationships we observe in the examples should be generalizable

to cases when 7% > 2.

chardléss of the generalizability of Corollary 6.1, an application of the envelope
theorem yields that the principal’s expected cost to complete the project—ignoring sunk
costs—will decrease over time. In the first-best case the pri.ncipal’s expected cost to
completion is constant over time, and it is, of course, less than or equal to the principal’é
- ex ante expected cost in the second-best case (as in the example in Appendik 3.1 where
15.42 < 18.44). However, when a ZDP is not optimal, it may be the case that for some
period 1 and all periods thereafter, the expected cost to completion in the second-best case
is less than the expected cost to completion in the ﬂrst-bestA case. In the example in

Appendix 3.1, this occurs after the first failure.

Because failure wages are paid in the interim, depending upon the agent’s utility function,
total compensation after several failures and then a success may be higher than, say, after
an immediate success (although the agent’s net utility would still be lower in the former
case). This observation has implications for erﬁpirical accounting research. If outsiders
conjecture that firms pay for performance and they attempt to test this hypothesis by
measuring the relationship between, say, eamnings and executive compensation, the
support they would find for their hypothesis would depend upon the portion of
compensation related to profit levels, the poﬁion related to accomplishing other non-

profit related goals, and the executive’s particular utility function since goal-based
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compensation can be positively- or negatively-correlated with the costs associated wifh
achieving these non-profit-based objectives. Thus, claims by some in the popul’ar press
that show that incentive problems gxist because executive pay is not correlatéd with
financial performance ignore the fact that executives are rewarded for achieving other
goals as well. In fact, as the following graphs show, one can hold all other assumptions
constant and only change the periodic input cost to derive examples where total
compensation is either decreasing or increasing in time. These graphs are derived using
the same assumptions as before; however in Graph 6.A, exogenous costs are five per
period, and in Graph 6.B, costs are two per period. In Graph 6.A, we see a positive

correlation between profits and pay, whereas in Graph 6.B, we see a negative correlation

between the two.

Graph 6.A
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Performance (when ¢ =5)
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Graph 6.B
The Relationship Between (Total) Pay and Performance
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Thus, as a summary to this section, we see that when the agent’s utility functions are
bounded below and the principal knows for certain that the agent is capable of
“accomplishing the task, then he will impose a deadline by which time the agent must
succeed. The maximum length of the contract, or the length of the interval before the
deadline is imposed, is a function of the exogenous costs of production; that is, as costs
increase, the length of the contract decreases (weakly). Furthermore, the agent’s expected
utility i.s decreasing over time, and for many common utility functions, the agent’s

periodic expected wages are decreasing over time.
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Chapter IV - Learning by the Agent:

Learning is the act of gaining knowledge, understanding, or skill by study, instruction, or
~experience. In a productive setting, it results in the agent becoming more efficient (at
accomplishing tasks) over time—more efficient in the sense that for a given level oﬂf
effort or disutility, the probabiiity of success increases over time. Learning can be the
consequence of a deliberate attempt by the agent to improve his efficiency, or it can occur

(almost) automatically through time (when little to no effort is required). The former

learning by (or through) experience. v

Fine (1986) also discusses these two types of learning. He refers to costly learning as
induced learning and notes that such learning depends upon “conscious actions andar
efforts by management...to increase the efficiency of the production systgm.” Costly
learning ‘occurs when the agent can improve his future proficiency (at accomplishing a
}a_sk') by undertaking additional current-period effort from whi%h he suffers disdtility. In
the context of this thesis, the costly learning problem becomes an interesting one when
(1) the opportunity to learn occurs randomly and (2) the principal is ignorant of the
opportuhity when it arises for the agent. Without these conditions, there are no incentive
issues regarding the agent’s decision to learn. With the exception of Amershi and Datar
(1991) there has been little theoretical work on this topic. Amershi and Datar consider
costly learning with moral hazard; in their m‘odel, the expected long-term benefits of
learning arc difficult to measure so the analysis is imbedded in an incomplete contracts

setting.

Fine refers to learning by experience as autononious learning and notes that it involves

“quasi-automatic improvements.” In this chapter, I analyze the situation when the agent
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learns in this costless fashion. 1 show that, with commitment and unobservable actions, if
the principal knows that the agent will eventually learn the task well enough to succeed at
will, then the main result of Chapter III holds. In addition, I study both the observable:

and unobservable action cases when the agent does not commit to complete the task.

Learning by lexperierice occurs in many jobs where workers discover short-cuts and
process improvements as' by-products of their productive effort (and costless
observations). These improvements allow the workers to be more efficient over time.
Other than in contrived examples, it would be difficult to find actual environments in
which learning-by-experience does not oceur. Regardless of the task—from digging
ditches to performing surgery to writing research papers—experience matters, and we see
that firms consider this variable in their decision-making. As Horngren, Foster & Datar
(1994) write, “Predictions of costs should allow for learning....the effec_ts of the learning
curve could have a major inﬂuénqe on decisions.” For éxample, as the three authors note,
the Kaizen (or conti;guous improvement) budgeting approach bases budgeted amounts
“on process improvements that are yer 1o be implemented. [their emphasis]” Such
decisions involve the consideration of initial levels of efficiency and expected ievels of

efficiency over time.

In the first-best case, such settings have been studied in the economics literature. For

example, Spenée (1981) considers the effect of learning on produ?:tion decisions over
time. In his thesis, the benefits from learmning in anyl period are endogenous since they
depend upon~ cumulative production to that point; that is, he relates Jnit costs to
accumulated volume to show tﬁat additionsﬂ to output reduce future costs. Thus the
optimal level of short-term production with learning is higher than it would be in the

absence of learning. In the stochastic environment studied in this thesis, the production

process ends once a single unit-of good output is produced; so, it is not possible to link
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efficiency to cumulative output; instead, it is assumed that the agen_i ledrns in a
deterministic fashion over time. This approach is similar to Zeckhauser's (1974).
Zeckhauser investigates the optimal interval for which a social planﬁer should fix the’
level (or type) of technology when an employee learns how to become more efficient
with any one technology over time. So, he studies the trade-off of gaining technological
efficiency (by using a new process) with the cost of lost efficiency which results because
the employee is less familiar with the new technology.

Fudenberg and Tirole (1983) also study learning-by-experience. They refer to it as
learning-by-doing and note that practice makes perfect or that “through the repetition of
an‘activity one gains proficiency.” They investigate the effects of learning on market
conduct and performance by considering both a monopolist’s problem anci a probléh1

with strategic interaction.

Learning by experience actually depends upon two factors: being present ‘during fhe
phenomenon and exerting effort to understand what was observed. As Arrovy (1962)
notes: “Learning is a product of experience. Learning can take place only through the
attempt to solve a problem and therefore takes place only during activity.” I model
learning by experience as simply being present and thus assume that it is costless for the
agent to improve his efficiency each period; with this type 6fleaming, repetitive exposure

to the problem increases the agent’s likelihood of success.26

The benefits of learning—the increase in the agent’s probability of success over time—
are modeled in a simple multiplicative fashion. I assume that the nrobability of success
in (learning) period ¢ is p,a, where each p, € (0, 1), and the sequence

A3

Pad

26Since we cannot link it to cumulative output (of zero).

¥
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b}

is increasing in 1 ( p; = 1 for V 5 2 T+ 1). Thus, each p, can be can be vicwed as a

representation of the agent’s cumulative know!edge to date (to period f)

I assume that learning ends after a finite, or 7, number of periods. In problems without
'co_mmitmeﬁt, this assumption allows me to solve the principal’s problem through
backward induction (in both the observable and unobservable action cases). With the
proper choice of parameters, {p,}, it approximates the concave nature of the benefits
associated with learning over time—as Arrow (1962) notes, “Le‘aming associated with

repetition of essentially the same problem is subject to sharply diminishing returns.”27

When the learning horizon is infinite, optimal periodic actions and wages are difﬁc'ultﬁ to
characterize because the problem is a nonstationary one (the transition probabilities from
the failed state to the good state change each period). By augmenting the state space—the
two levels of quality—by the iteration number, the problém can be converted into a

stationary one; however, it is difficult to characterize the optimal periodic policies.

When learning ends afier 7T iteraticus, we can derive characteristics of the optimal
contract. .In the following section, I show that the main result of Chapter 3 holds under
certain conditions, whereas in Section IV.B. I provide characterizations of the optimal

contracts in cases without commitment.

27Although I do not place any such restrictions on the parameter path in this version of the paper. The
concave nature of the benefits of learning over time can be derived from typical assumptions and
observations of learning curves—see Horngren, Foster, & Datar (1994), for example.
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IV.A, Committed Agent (Unobservable Action)

With precommitment, moral hazard, and learning-by experience a finite contract which
ensures success by its deadline—as in Theorem 3—is optimal if and only if the agent
eventually learns how to accomplish the task in any period. That is, regardless of the
length of 1hé learning interval, if at the end of the interval the agent is a fully capable

individual, then the principal will (eventually) impose a deadline on the agent.
1V.B. Learning Without Precommitment

Without precommitment there are two main phendmena to consider: (1) how does the
optimal action change with respect to the agent’s efficiency in the current period, and (2)
how does the optimal action change with respect to the agent’s efficiency in future

periods? \

By assuming-that agent’s learning ends after a finite number of periods, say 7, the
solution canﬁ be characterized because from peridd T onward the problem is stationary; so,
the value function at iteration 7 is the salvage value in a finite-horizon problem. By
working backward, each learning period’s optimal action can be determined. The level of
this effort depends upon the agent’s current and prospective levels of efficiency. The

following theorem shows that in both the observable and unobservable action cases, as

the agent’s efficiency increases within a period, the optimal action increases.

Theorem 7: As the agent's efficiency parameter increases in a period, the

optimal action increases within the period, i.e., a;(py) > 0.
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In the observable-action case, in any period 1, the following optimality condition holds:
w'(a,)=p [¥ ] (18)

where 'V, represents failure costs (expected production costs after period r). As in Spence
(1981), on the optimal path in any learning period ¢, marginal short-run costs (the LHS)
equal the present value of the total expected future-period cost reduction of an additional

unit of effort in period 7 (the RHS).

One might expect that less skilled workers would be required to work harder to
compensate for their deficiencies, but this does not happen because the benefits to the
principal associatea with inducing increased effort—the reduction in expected failure
costs—are greater for agents with higher efficiency parameters than ones witliloWer
efficiency parameters. Thus, agents who are more e.fﬁciént as the result of past training or
experience work harder in equilibrium than less efficient agents (when future-levels of
efficiency are held fixed). The following graph, where efficiency pérameter P(H) > p(L),

illustrates this point:

Graph 7: Expected Failure Costs

EFC

(1-p(L))EFC

(1-p(H))EFC

0 action ' 1
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Theorem 7 implies that as the agent becomes more efficient, the probability of success
increases in two ways: first, there is a higher chance of success for a given level of effort,
and seqond, the agent actually exerts a higher level of effort in equilibrium. This
observation can be seen in the following graph which is based on a single-period leamiﬁg

problem (T =1).

Graph 8: The Optimal Action and Probability Success when T = 1.
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Graph 8 also illustrates Corollary 7.1. For any p, < 1, the first-period’s optimal action is

less than the constant optimal action from period two onward.

Corollary 7.1: The optimal action and wage fror1 the (T+1)th period onward—
after learning has stopped—is greater than the optimal action and wage in the

Tth period.

.
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However, actions need not increase in time over a sequence of learning periods.28
Although Theorem 7 states that, ceteris paribus, optimal effort within a period increases
in.efficiency this need not occur over the sequence of learning periods, because as the

following theorem shows, increases in future efficiency paraméters cause decreases in

current-period actions.

Theorem 8: The higher the future efficiency parameter, p,, for s >, the lower

the optimal action in period ¢, i.e., a/(pg) <0

In other words, the more that the agent learns in any future era—the larger the gains from
future learning—the lower the levd of effort at the beginning of that era. This result is
intuitive: at the (interior) optimum, marginal prevention costs equal margiriél failure
costs. As increases in future efficiency reduce expected failure costs, prevention

activities decrease.

If the efficiency gains from learning are large enough, it may be opt;mal to instruct the
agent Lo take no action in a particular period—that is, to just watch the experiment. This
occurs when input costs are relatively low and agent is initially inefficient but improves
rapidly over time. Such an outcome can be interpreted as on-the-job training. It is
important to note, though, that the agent must be hired during the training period even if
he does not work. Depending upon his utility and disutility functions, he may be paid a
positive wage even without taking effort. For example, if the agent has logarithm‘ic
utility, if V¢0) = 0, and if his periodic reservation utility is zero, then he would be paid a-

wage of one unit since /n(/) = 0.

28They do appear to be increasing in time when the benefits from learning are concave in time—when Pr+]
-p;<p,-p,y forevery 1. 1 plan to prove this fact in the near future.
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In this thesis, I analyze a setting in which the agent is hired to accomblish a task for the
principal. Such a problem provides an accurate model of the planning and control
problem - that superiors must sol\te in decentralized organizations.. In addition, the
problem models similar goal-based relationships which exist within the ecoany,
especially in job-shops, manufacturing departments, and a‘mong contractors and their

clients.

This problem is fundamentally different from other multi-period agency problems, and a
major advantage of studying it is that it provides a natural setting to analyze issues like
quality, productivity, and learning in the presence of incentive problems. Analysis of the

problem has led to several interesting results.

First, when effort is unobservable, the agent precommits to accomplishing the task, the
maximum length of the optimal contract is finite and endogenous. This result may
explain the fact that observed contracts come in a variety of lengths, because, here the

maximum length depends upon failure-related input costs.

Second, the optimal contract requires the agent to take the highest possible level of effort
in the final period of the contract if it is reached. It seems that the agent is indﬁced to
work harder in early periods, not solely through wage incentives, but also by the “threat”
having to work even harder in the future. Thus, itvis this threat of high disutility from
effort combined with decreasing periodic wages over time which provides the mechanism
by which the principal aligns the agent’s interests with his own. One can view such a
result as a theory of deadlines; when one knows for certain that the agent is capable of

succeeding, the imposition of a deadline increases the agency’s efficiency by inducing the
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agent to atterﬁpt to succeed in earlier periods (to avoid the pain of working extremely
hard at-the deadline. In addition, I have shown .optimal failure wages are decreasing in
time, and that for many common utility functions, expected periodic wages are also
decreasing. Under specific assumptions, I have shown that optimal actions are increasing
in time and success wages are decreasing in time. Furthermore, I have shown this to be

true for general utility functions when the length of the optimal contract is two periods.

Third. when learning is introduced. within a period, more efficient agents (with higher
levels of cumulative knowledge) work harder than'less efficient agents. Additionally, as
the benefits of learning in the futﬁre increase, the optimal actions in previous periods
decrease. However, without additional assumptions, actions need not increase over ti'me.
The research presented in this dissertation can be extended along at least two lines. First,
a further investigation of costly learning opportunities in the presence of incentive
problem's can provides insights into the nature of performance evaluation in total quality
programs. As was mentioned in Section IV., costly learning occurs when employees
must make sacrifices—which are non-productive or even detrimental towards current
period oulput—td earn long-term benefits. A costly learning problem is presented in

Appendix 4.

Second, the results can be generalized to the case where, ex ante, achievability of the goal
is unknown; that is, where neither the principal nor agent know whether it is possible to
achieve the objective. Because they are both uninformed this is not an adverse selection
problem. A paper sorﬁewhat along these lines is Hirao (1993) which investigates a multi-
period agency in which the agent’s first-period effort provides information about the
long-term profitability of an investment. His paper does not consider this learning

problem in an environment in which the agency attempts to accomplish a goal which is
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what 1 Suggest For example, such a model can be operationalized by mu]‘uplymé each
perlod s level of effort, a,, by a parameter, p € {0, 1} to attam the probability of success
Of course, if p = 0, then the objective could never be achieved; so, it vould be in the :best
mteresfs of the principal to cancel the project and terminate the agent’s employment 2‘9 In
such a situation, the agency problem is compounded beca7se the principal cannot 1§1fer

whetier failure is due to seleciing an unattainable goal or because the agent is shirkmg;,

f

f p = 1, then the goal is achievable.
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Notation

agent’s strictly concave utility function
agent’s strictly convex disutility function

cost (of exogenous inputs) per iteration
action taken in period t (e [0, 1])
‘wage paid upon failure in period t

wage paid upon success in period t

efficiency parameter € [0, 1]; an increasing sequence, {p,}, indicates
agent learns through experience :
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Appendix 2: Theorems & Proofs

Theorem 1: In the first-best case—with or without precommitment by the agent—if the

agent is strictly risk- and work-averse, (a) a zero defect policy is optimal if ¢, the constant

periodic input cost, is greater than or equal to ¢/ where ¢/ satisfies

¢ =w'(1)-w(l). o

(b} if an interior solution obtains, the optimal contract is a stationary policy.

(i) Without commitment, it is described by:

; ' w'(a*)=— : | (1.2)

where {a* w*} is the optimal periodic action-wage pair and both variables are

independent of , and w(a) is a composite function described below.

(11) With commitment, the optimal pair {a*, w*} are described by:

1
A=— 1.3
U'(w ) (3
W_*LC)
*
k:——a 1.4
V'(a*) (1.4)

Proof of Theorem 1.b.i: To prove the case without commitment, I use stochastic dyanmic

programming, and note that the principal’s value function, ¢(0), is defined as the value of

the optimal policy in the failure state of g = 0:!

I'The game ends when the objective, g*, is realized; so ¢(g*)-= 0. (Thié problem is a discrete version of a

“first crossing time problem™; so, for any constant action, a > 0, thé game ends with probability one.)
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40)=manfar—w(o) {1 -] o

or, since r will be received with probability one, we can rewrite this as:

a a

¢(0)=r1- Illin{M}. P (1.6)

differentiating with respect to a gives,

W (a*)_—————. (1.2)

Proof of Theorem 1.b.ii: With commitment, the principal’s optimization problem can be

written as:

{ma;c, {alr—w]—c+(1—a,)‘}’l} (1.7)

subject to:

Participation:

U(w,)—V(a)+(1-a/)r, 20 (1.8)
Where the agent’s and principal’s conditional expected utilities are defined, respectively,
as:

*

I', = U(w:)—V(a()+(l—a:)Iﬁl (1.9y

Y, =ar-w, —c+(l-a)¥, (1.10)
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The objective function is (weakly) concave with respect to the choice variables and the

R
participation constraint is strictly concave (so we are maximizing over a convex set). The’

first-order conditions with respect to the periodic wage, w,, '

‘ kz——*— for vV t (1.11)

arc identical; so, the wage is constant over time. Thus, all that is left to show is that the
action is constant over time. Since the wage is constant, [ rewrite the maximization
problem as:

max {alr—w—c+(l—a,)‘P,} : (1.12)

{;1,.\\'};"

subject to: -

Participation:

*

U(w)-V(a;)+(1—a;)r, 20. (1.13)

Now, assume that a constant action over time is optimal, then the first-order conditions

with respect to each ¢, are
(1—a*)"'[r—kll;]—x[V’(al)wur,]zO, o

and the matrix of cross-partials is a negative, diagonal matrix where the diagonal terms
/
are ; /,
A

5 =hU(w)<0 and g:;:—w“(a,)wforw, (1.15)
. t v
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and the off;diagonal terms equal zero:
-

L. =L  =O0fort=#s. ' (1.16)
" ,

Consider the naturally-ordered principal minors of such f,é diagonal matrix where each
term is negative. The sign of the derivative of the kih—oxzd“eri principal rﬁinor is negative
when  is odd and positive when k is even; this is exactly the condition which describes a
local maximum, and sin.ce we are maximiziﬁg a ,wcaklyiconcave function over a convex

- . WL T
set, it is a global maXimum.

Lemma 1.1: as the level of (future) production costs increases, the optiﬁlal action

increases, i.e., a'(c) > 0.

o

T ;
N

Proof of Lemma 1.1: Since condition 1.2 must hold for every ¢ > 0,

w(a*(c))-———=0, (R R))

differentiation with respect to ¢ yields:

a'(c)| w''(a(c)) - a_(lc“)[w'(a(c)) _ w(a(C))] LG 0. (1.1.2)

" -

v

= 0 by first-order condition |

54



Appendix 2: Theorems & Proofs

When evaluated at the optimal a*, the term in the large parentheses in the brackets

disappears; so, rearranging gives:

1
a'(c)=————=>0. (1.1.3)

a(c)w"(a(c))
This is positive since a(c) > 0 and w"(a) > 0.
Now. rearranging the optimality condition (1.2), which holds for any ¢ <cf, gives

.- c:a*w'(a*)—w(a*).v (1.17)

Since w(a) is strictly convex, the RHS is strictly increasing in a; so, for any a~ we can

find a level of cost, ¢, which satisfies (1.17). Thus, there exists a ¢/ such that
ch=w(1)-w(1), (1.18)
and for every ¢ 2 ¢!, a ZDP is optimal.

Theorem 3: (Restated for the case where U(0) 2 V(0) = 0.) If all of the assumptionhs

stated in the text hold and if U(0) = 0 and V(0) = 0, then there exists T* such that ar*= 1.

Proof of Theorem 3: The proof is given through a trio of lemmas.?

s

2The proof given here is more general than the one given in previous versions of this paper which required
the assumption that once the project was started, the principal was obligated to complete it, i.e., the
principal was desperate.
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Lemma 3.1: The optimal contract will have a finite length.

Proof of Lemma 3.1: Recall the definition of T',_; (equation (12) in the text). Rearranging

this definition gives

[ =U(b))+T, +a/(U(g])-U(b))=T) - V(a)). G.11)

Using period 1’s incentive compatibility constraint, we can substitute for the bracketed

terms in'(3.1.1) to yield

[ -T = U(b;)+a;V'(a;) - V(a;) '(3.1.2)
Since V(-) is convex and V(0) =0, a,V'(a) - V(a,) 2 0 for any nonnegative a,. This fact,
combined with the assumption that U(b,) 2 0, means that the left-hand side of (3.1.2) is
nonnegative for every /. This means that the sequence of the agent’s (conditional)

expected utilities, {I';}, is nonincreasing.

T}gyé sequence, {I',}, is bounded below by -¥(1); if there existed a t such that ", <-}(J),
the agent could improve his utility by selecting a_ = 1 and get utility of at least -¥(/) since
U(-) = 0. Since it is nonincreasing and bounded below, it must converge to some point, I

. >-V(1). Thus, for every g > 0, there exists an 7(e) such that for 7 - 1 > T'(e),

)=0. (3.1.3)
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Now [a,V'(a,) - V(a)] is increasing in @, and both that term and U(b, are nonnegative by
hypothesis, as € — 0, [U(b) + a,V'(a) - V(a)] — 0. Thus, both U(b,) — 0 ahd a,—> 0 as

{ —>» 00,

Now consider the principal’s expected profits (in non-recursive form) after period t:

k=ta )\ j=tel

Y = \ [H(l—aj)[ak(r—gk)—(l—ak)(bk—c)]} T (.1.4)

For any positive r, and nonnegative sequences {g;}, {b;}. the above term is certainly less

than the following term:

Sfliews] e

k=141 j=t+!

(This is true because (3.1.5) provides the benefit with pro.bability one and requires no

additional wage costs after period 1.)

From the following steps, it is easy to see that the expression in (3.1.5) is less than zero in

some period 1 where «, is sufficiently small such that c/a, > r. -

23| § (EVCENSI R » | y (0] RO Y R

K=t+1\_ j=t+1 K=t+1\ j=t+l k=t+]

(The inequality arises because the sequence of actions is decreasing.) Finally, we see that

the negative expression on the RHS of the statement is a geometric series; so,,
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-*

k-t (o] - €
r—CZ(l—a'). =r—(1——_—(—1:—lf)5=r—a—' | | (3.1.7)

k=1+1

Thus, if the contract were of an infinite length, the principal would always find it in his
best interests to terminate the contract. Therefore, the contract cannot be of an infinite

length.

Lemma 3.2: If a finite-period contract does not ensure success, then under the

assumptions given above the participation constraint does not bind—I"p > 0.

Proof of Lemma 3.2: Note that after the last period of a contract with a finite maximum

length, t_he agent’s expected utility is zero. That is, if the contract lasts a maximum of T
periods, then ['y= 0.

./J ‘ .
If a success-is not required by the last period of the contract, then 'y, the agent’s

expected utiiity prior to the start of the last period, must be nonnegative: ¢

Iy, =ayU(g) )+ (1-a))(U(bs) +0) - V(a}) 2 0 (3:2.1)

-

I3

If not. the optimal last period action, ay, would be zero thereby ensuring that I'r; 2 O
Now, assume that the participation binds (so that [, = 0). Since {I';} is a nonincreasing
sequence (see the beginning of the proof of Lemma 3.1), then it must be that ['z.; = 0.
Thus, since [ =17, = AFT: 0. the agent’s expected utility, [';, must be equal to zero at

every period 1 =0, 1, ... .

This mearrs that periodic failure wages, b,, must be equal to zero each period. To see this

note that 'z, = 0, and note that if b7 > 0, then the agent could ensure strictly positive
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utility in the last period by taking no action, i.e., Ufby) > 0. By backward induction, we

get that b, = 0 for every 1.

Since I'; = b, = 0 for every ¢, the incentive compatibility constraints and the participation

constraint can be written as:*

U(g,)—V’(a‘) =0 Vt (3.2.2)
a,U(g,)-V(a))=0 , (3.2.3)

Similarly, the facts imply that:
aU(g,)-V(a,)=0 V't . (3.2.4)

Now combining the incentive compatibility conditions (3.2.2) with the equations in

(3.2.4) gives that:

U(g,) = =V'(a,) Vt (3.2.5)

This means that V(a,) = a,}"'(a,), but this is a contradiction since V(-) is strictly convex
and ¥(0) = 0 by assumption. Thus, there is no solution which causes the participation

constraint to bind for which a7 <1 is optimal.

Lemma 3.3: The optimal finite-period contract will ensure success in the last period. (If

the contract lasts a maximum of T* periods, where T* < oo, then ap+ = 1.)

3Recall we are assuming that the participation constraint binds.
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Proof of Lemma 3.3: Suppése not. Suppose that a 7-period contract is optimal.and that 0

<ar<1. (If ap =0, then a (T- 1) period contract would be optimal.) Since the Tth
period incentive compatibility constraint must bind. it must be thatyiz > 0. Similarly, for ,

.

each periodr=10. 1. ... T-1, i, > 0.

Now consider the first-order conditions with respect to b:

1,, :);—Z _H S : (;.3,1)
S ) (RSTI § (B

m=l n=1

Note that since U'(-) > 0, the right-hand side is always positive (for every 7). Now, since
g > 0. then A = 0, and since p1, > 0 for every =0, 1, ... T, the left-hand side is negative
for every 1. Thus, we have a contradiction that ar < 1. Thus, it must be that ap =1, and

so our proof is complete.

Corollary 3.1: If a ﬁriite—lenglh contract is optimal when the agent’s utility function (for

wealth) is unbounded below, then ay« = 1.

Proof of Corollary 3.1: Suppose not. Suppose that the optimal contract has a finite

maximum length of T periods and that a < 1. Let I17 equal the-ex ante probability of,

success (over the length) of the contract. So,
T t-1 )
M, = I](l—aj) a, |, G.CLI
i
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and (1 - [Ty) is the probability of failure through perid T.

Since the agent’s utility is unbounded below in wealth, the participation constraint will
bind in the optimal contract; so, under the assumption that the agent’s reservation utility
is zero. his ex ante expected utility is zero. Similarly, if a failure occurs in the last period,

the agent’s conditional expected utility 1s zero.

Now if it is worthwhile for the principal to undertake the project, it must be that his
expected profits, Wy, are greater than zero. By appending the optimal. contract-with
another optimal contract, the agent is no worse off, his incentives are unchanged, and the
principal is strictly better off (by (1 - T15)¥Wy) which contradicts the hypothesis that the
optimal contract has a finite maximum length and does not require success in the last
period. Therefore, the corollary is proved. |

-

Theorem 4: Failure wages. b,. are a decreasing sequence in time (and g, > b,._)).

Proof of Theorem 4: consider the first-order conditions with respect to b,and g, for every r:

=A- - 4.1

=A- . + : (4.2)
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Now, consider the sequence of conditions in (4.1). Since an additional nonnegative
number is subtracted each period, it is easy to see that this sequence of inverse marginal
utilities for failure wages is decreasing, 1.e.,

o0

1

— (4.3)
U'(b; ) g

is decreasing; thus, failure wages are decreasing over time. |

Coroliary 4.1: If is linear or convex, then expected periodic wages are decreasing.

U'()

Proof of Corollary 4.1: The following condition (4.4) is a special case of ﬁ;oposition 1 in

‘Rogerson (1985). It is derived by multiplying the right-hand-sides of the in{(erse margiﬁal
utility conditions (4.1 and 4.2) by their respective probabilities. Howe{'(er, ‘unlike in
Rogerson, where this condition holds along any path, here, it holds only along the failure

path (since the game ends upon any success).

]. =a ! —+(1-a;) ! . (4.4)
Ulbn) " U(e) U |
If 1/U'¢) is linear or strictly convex, then
- ]‘ =a, 1_ +(1-a;) 1, > - 1 - (4.5)
U'(bl_,) U'(g,) U'(bl) U’(alg[ +(1—al)bl)

and
*

t+l”

ajg; +(1-a/)b; > b 2al,g, +(1-an, )b (4.6)
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The LHS and the RHS of (4.6) give that expected periodic wages are decréasing over

time.

Theorem 5: Assume V(a) = a. then the optimal contract has the following characteristics:

[A]

dy =y = =gr;=0,and gy~ =1, and so
I 71 7

J

3. T* solves the following program;

mlin{t[c + w(t)]} < (5.1)

subject to:

ﬂKwOD—LZO.v (5.2y

where w(t) is the periodic wage required to ensure the agent’s participation when no

- effort is taken until period 7 and then the maximum effort is required.

)

Proof of Theorem 5: With linear disutility of effort, the constraints to the principal’s

profit maximization problem (found on page 14 in the text) can be rewritten as:

’

aU(g))+(1-2;)(U(b;)+T,)-a; 20 (5.3)

*

U(g,’)—‘U(bl)—f‘—lzo . (5.4)

and the agent’s conditional expected utility after a failure has occurred in period f -/, can

be rewritten as:

r :a:U(g:)+(1—a:)(U(b:)H“‘)—a] ‘ (5.5)

t-1
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Now substituting (5.2) into (5.3) yields:

I, =U(b)+T,. (5.6)

If the incentive compatibility constraint (5.4) binds, then the optimal action is zero which
is a contradiction; thus, the constraint cannot bind for any period t; so, either periodic

effort is equal to zero or to one. Also, since the constraint does not bind, the lagrangian,
I,, is equal to zero for every . From conditions (4.1) and (4.2) in the proof of Theorem 4,
the periodic failure and success wages must be equal; so the principal pays a fixed wage
cach period. Since a, = 0 or 1 for every 1, and since it is suboptimal for the principal to

pay a wage each period if a success will never occur, then there must exist a period 7* in

which the agent takes a;» = 1.” So, the principal must find the number 7 for which a; = a;

agent participate in the contract. In other words, thé principal solves the following

program:

min{t[c + w(t)]}

t

subject to:
tU(w(t))-120.

‘Theorem 6: Let a;+ = 1. then b+ ; = gy« (b7 is the failure wage paid in period 7* - /

and g« is the wage paid in the final period, 7).

Proof of Theorem 6: Suppose not. W.L.O.G. assume bz« ; > gr+ Since U¢) is strictly

concave, we know from Jensen’s Inequality that:
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B U(gT)+%U(bT,,)} < [U(%gT #be ﬂ e |

Thus, the principal could provide the same utility as [U(by+_;) + U(g7+)] at a cost less thanr
(by«.; + gy%) by offering a constant wage each period. Since total utility after a 7*-/
period failure does not change, the agent’s inéeﬁtives do not change; so, setting by ; =
gy« does not change the agent’s optimal actions. Therefore, it is not optimal for by, ; #

g7~ Thus, by ;= gre.

Theorem 7: As the agent’s efficiency parameter increases within a period, the optimal

action increases within the period, i.e.. a,'(p,) > 0.

Proof of Theorem 7a (observable action case): the principal’s problem is:

'rpi;‘*, wa)rerS [ﬁ(l_pjaj))(v;(aj)m) o

{‘1}, j=1

1=2

where each period’s participation constraint has been substituted for as in Theorem 1. The

optimality condition for the principal’s problem in learning-period (1 = 1.....7) is:

w'(a,) = p, {w(aHI ) ro+ i |:[ ﬁ(l - pmam)\J(w(aj) + C)H (7.2a)

j=1+2 m=t+l

Implicit differentiation of the above condition with respect to p, and simple rearrangement

yields (7.3a):
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W) rer S Hﬁ(] _pmam)J(w(aj)H)H ﬁ(l—pmam)][w_(apl)mﬂ

=143 -1 m={+]
aal J ]

- - ‘150
o, wla,)

The numerator, which is the expected cost after period ¢, and the denominator are both
positive; thus, a,'(p) > 0.

o : , :
Proof ef Theorem 7b (unobservable actlog(case): With an uncommitted agent, we can

backwardly solve each period’s contract, and in any period, failure costs are exogenous.

Fix all parameters after period f + I, and let 'V, represent expected costs after period ¢
‘ N .

(from period 7 + / onward). In period ¢, the principal must solve the following problem:

LY

Jmin {pag +(i-pa)b, -]} (7.1b)
subject to:
p.a;U(g;)+(1- p(a:)[U(b:)+ 1“(]— V(a;)=0 (7.2b)
p,[Ug))-U(b;) -1 ]-V'(a;) = 0. (7.3b)

There are five endogenous variables in this single-period problem: g, b, a,, A,. and p,.

The five corresponding first-order conditions are
L =L =L =L, =L =0 (7.4b)

where L is the Lagrangian associated with (7.1b - 7.3b). Differentiating this system of

equations with respect to p, and rearranging, generates the following system of equations:
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—ng Lo La La Ly g'(pl) Lgp, [ 0]
Lo Lw Lu Lu T | b(p) prt 0
Lo Lu La Lo Ly fa(p)|=-Lw |=| ¥ (7.5b)
Ly Lw. La L L;.p l’(pt ) Lkpl 0

_LF;' Lh“ L"H L?-u Lw“p‘(p() Lum | L 0 i

Now, we can solve for a,'(p,) by applying Cramer’s rule (by substituting the vector on the

RHS into the third column of the hessian matrix). Such an application gives

SORE 8

(7.6b)

With two constraints, for a minimum to attain, the hessian and all of its border-preserving
principle minors must have positive determinants. So. let D represent the hessian and Dj
represent. the resuliing 4-by-4 ﬁmtrix after the third row and third column have been
elimnated. Since both matrices are border-preserving principle minors, their
determinants are both positive and failure costs are positive, a,'(p,) > 0.

s %
Corollary 7.1: the optimal action and wage from the (7+/)th period onward—after .

learning has stopped-—-is greater than the optimal action and wage in the Tth period.

- Proof of Corollary 7.1: (proof is given in the first-best case because it better illustrates the

issuc; however, in either.case 1t is easy to see that because of Theorem 7, when pr < 1, the
optimal action is less than when p, = 1.) Comparing the optimality condition for period

T'+1 (Condition (1)) with the optimality condition for period 7, (7.2a), yields:
W'(a‘r) = p1‘|:———:| = pTW’(aTn)' (7.42)
’Since w(-) is strictly convex and p, < 1, we have thata, <a,.,,.
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Theorem 8: The higher the future efficiency parameter, p., for s > r—the lower the

optimal action in period ¢, i.e.. a,'(py) <O0.

Proof of Theorem 8: (I show the proof in the unobservable action case, identical logic

holds in the observable action case.) Fix all parameters after period r + /, and let ¥,
represent expected costs after period / (from period 1 + / onward). In period 7+1, the

principal must solve the following problem (which minimizes ‘¥,):

{n“g}.i}?bw}{pmamg,+1 +(1=pa. )[bu + LPH,]} @)
subject to:

p‘*'a“”U(g‘.*' ) + (1 ~Pud )[U(b:n ) +T, ] - V(a:u) 20 (8.2)
P [U(gL] )=U(b;,)- T ] - V'(aj,,)=0. 83)

Consider the first-order condition of the lagrangian with respect to action:
Pm[g:n _b:+l _LIJHI]_*'“'HIV”(a:-»I):O' (8'4)
Since puV"fa) > 0, the term in brackets is negative.

Now apply the envelope theorem by differentiating the lagrangian with respect to p,,;:

a:n[g:n - b:+1‘ - qjul]_ }LHI[U(g:H ) - U(b:H ) - rul ] - Ht+1[U(g:+l)_ U(b:n ) - rl#l](s-s)

From the incentive compatibility contraint, (8.3), the sums inside the second and third

brackets of expression (8.5) are positive. Subtracting both sums yieldé a negative value.
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:S"lmi‘larly by the first-order -Con.dition ‘with respect -f‘o‘v'effort '(8'4‘) Ihe lerm in the'ﬁ'rst '

bmcket IS ncgatwu bo e (p b)) <0 or increases in next period’s efﬁcrencx parameler

rcduu thrs pulod s expected failure costs. _ .

Now, the result I"ollowS from lemma 8.1 (the proof is anélogous to the proof of Thm. 7

(part b):

Lemn_l‘a 8.1: a,¥, > 0 in the interior of [0, 1].

proof becauqe we can solve the cequence of contracls through backward 1nduct10n in the
cost mmlmrzatron in perlod L. there are five endogenous varrables g,, b.a.k, and u,
associated with the problem (8.1 - 8.3). So, there are ﬁve ﬁrst-order condrtrons as in

(7.4b).

Differentiating this system of equations with respect to ‘¥, generates:‘

—I"m: L er Lyl Lw— g'(LPM) Ll"‘*jrol 0]
I“gh ibb Lha Lh) _ Lhu b'(q"(;‘) Lb"r'l-l : i
JLe Ly L Ly Ly fa(¥.) )= L, [=|P .36
Ly}. I‘h/ Lu)» L}.}. . I“Lu‘ )""(\{Jl-j) » L’.‘l‘l ‘ O )
_Lgu Lhu Lnu L}.u .Luua_p'(‘\p[--{ )_ _Lu‘f‘[‘;l | L 0 N

a(W)=——. ' (8.7)

For a minimum to attain. [hL hessian and all of 1ts border presenmg principle minors

muqt have positive dctermmams so. a,/ (V) >0.
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Appendix ,2_:V‘fl‘h'cor‘em$"‘& Proofs.-
Now Siﬂccga,'(‘i’,) >0 -and- “‘.i‘,'(pv,*,} <0, we hav¢ that a,'(p,, ;) < 0 and by induction, a,‘:(p_&j)‘ |

<0 fors>1.
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A.[')pcn”'(l‘ix 4: An Example of a COStly L_car'n‘ing‘l:"rbblem’

”I’}llefcv are many wzivs‘ to QUQauc.e costly Leaminﬂ. into Lbe Lype of problem stud;ed in 11}45
_paper, th Iollowmg, pl‘CSLrlldllOﬂ 1s probably the simplest: | consnder a two 1tera110n
:prohlem where the- prmcnpal can obsuve lhe producls quahty after each 1teratxon‘ I'._‘
153ume that 11 a failure occurred in the tlrst period, then with probablllty £, the agem 15
presented w1th the opportumtv to 1mprove his second penod $ efﬁc1ency—the probablhty‘
of success- for a fixed seCOnd perlod actxon——by taklng an addmonal amount of effort, L
I The op_portumty'_to leam cannot be communicated to the prmC1pal (nor can Lhe“ principal
inf‘er"\vhep_thé leam‘ihgv Q‘pp'oﬁﬁnity- was aéé\ept’ed). Such ‘:Airsetvting can arise if the. :ig:é‘ht’
~can learn, by say, investigating the c‘ausbe‘ of failure. When more than one unit »is‘prodlué%d
per p‘ériod,‘ 'suc'h an- inveétigation could, in _‘ fact, be‘ éoSllv 16 the @ﬁﬁéipal if 'thé',

investigation resulted in a lower first-period production rate.

If fhe leéming action‘i does not ,affecti reportéd résuits for fh‘e peri'od. "thei pr‘obielﬁ can be
: solved using pomt wise optlmizauon However if leammg reduces current- penod _
results bv say requmng the destrucllve testmg of certam units or a shut- down of
productlon. then the agent s leammg declslon requires hlm tQ COl’IS-ldCI‘ hlS,Utlllt}’ at m'o
points along the optimal contract cu%fe: at thc realized level and at the lower level v\’hjch
results frbm the: le:ming action. In this case. theuprob'leni does.’n‘ot dégenerate 0

pointwise optimization: one must use optimal control with “time™ lags:

The agent's deciston to learn. denoted d. is endogenous: of course. the only interesting .

case is when the priﬁcipal prefers that the agent learn: when d = 1. With this type of

o

costly learning. the principal's problem becomes:

"In this general setting. a finite-period problem arises if the principal’s inventory of inputs is finite.
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Appchdix 4: An Example ofa Coétly Learning Problcm o
AL‘)T?'\M} {pd - (1 - pa, (b, + L)+ ' | | |
(1- pu,)[/.(yd[u‘,(vl,v)(r~ g,)a(l.—uz(lv.))b,]+‘(1‘—4)[paz<N)(r—gz)—(l_-nu,m)h:])whv
| :(l")[PUJ(V‘N)(P&}),—('-_— Pi‘:(N))l”:]]} . |
S‘Ubjecl"to: | |
pa;U(g;)— ‘\’(a,')‘+ v ; .
{1- pa[)[u(b[) +f(d [—y(L) +ay(L)U(gy)+(1- a;(L))U(b;_) - v(ay(L))]+
S el au(e) + 1= pal(N)U(b]) - Vi (L)) +
(1= )P (NIU(er) + (1= pa(N)U(B}) - V(a(L))) ]2

Y

Learning IC:

¢

d* e ardge{rnqa\{d (g )*(] - a(L))U(b )— V(a (L))H +

(l—d)[ ( )U(g) -(_l—béZ(N))U(bS)'—IVV(a:(N))]}’

it is casy o see thdt d* {0, 1}: so, this condition can be rewritten as: =~

| (2d*—I)[—\'(L)+[a;(L)LT(g;)+(1_—a}(L)),LJ(bZ)—:V(a;.‘(‘Ll)‘)H
| (1= 20 %) pas (NJU(g2) + (1= pa (N)U(b3) - V(@i ()] 2 0

1. a, earg ma\{pa U(e ) ~V(a,)+ (1 - pa-,t)[U(b,')‘Jr EU(period 2)]}

Bl

2L.  a)(L)earg max{a;Ll(g; )+ (1-a, Ju(by) - V(a:)}

a,

2N, ay(N)e aré max{pazU(g;) +(1- pa:)LT(b;)— V(a, )}

a-

"I replace the 1C conditions by their associated first-order conditions: -
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| A‘pp.cndi'xj 4: An Example of a Costly Leal“_nitig:‘PrbbJefn;._'

o pU('gI'-)_'?'Y‘(é{ )- b[ﬁ_‘(b{)_% EU<pe”°d)] - 0 B
U U() - Viai(i) <0 |

':N}'ﬂu@n4wmﬂévtiﬁhetd

' Lemmé 1 ‘The second penod action w1th learmng is greater than the second perlod

‘actlon wnhout learmng or d> (L) > a, (N)

x P‘f'ogf' From the second perlod IC constramts since (1) V() is conve\( (and mcreasmg)

(ii) p< 1. and (111)

‘we have that:

In other \\ords an “educated” agent takes a hlgher level of actton than an uneducated
one; not only does l,eammg, b) ltselt, increase ‘the probability of success. but it also

induces the agent to work harder.

The optimal wage schedule will satisfy the following conditions:

I'st-period:

| success:

farlure:
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7 Af)p_Cﬂdi’X 4: An Example ‘of‘a.Co's_t;l__y L‘c:a'rnihg_l’rob.lém ‘

SRR

if *= 1 then the second period wages become:

L, v[a() pa(N]+uL+puw

U'(g;) . _(1>.—pa‘) (l—pa )[ (L)+(1—/)pa( )]

. N Y[pa'(N)*a'(L‘)].—ul¥I5Li;
U(by)  (1-pay) (1-pap)s (1-ax(L))+ (1- (1 - pa: ()]

78

7 2nd-period
s_u_écess:
|, by | +_A ‘Y[(z‘d*"])a;(l—‘)'&(l‘dzd*)pa;(‘N)J;"“:L+p“.z.\"
Ule) — (1=pa) (1= pa)fd*al() « (1= d *)pay(N)]+ (1~ )pa;(N)]
failure | | “ .
o em rll ()20 e N))] b,
Ubl)  (1=pal) (1-pap)/fa*(1-ai(1) + (1_d*)(1_pa( ))]+(1_r)(1_pa N))] -
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